If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-14y-240=0
a = 1; b = -14; c = -240;
Δ = b2-4ac
Δ = -142-4·1·(-240)
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-34}{2*1}=\frac{-20}{2} =-10 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+34}{2*1}=\frac{48}{2} =24 $
| 5x-11=2x-8 | | y^2-14-240=0 | | -10r+-10r-13r-4r=-11 | | 2x+3x+4x=81-4x | | k/(-7/2)=23/5* | | 10x3x-1=7+3+2 | | 8t-4+9=t7t+2 | | (8)^2x+3=64^3x | | 2(x-1)+8=4x | | 52x−4=42x−32 | | 12a−12a+3a−a=6 | | (16x=13)=(16x-7) | | 18r+5r-16r-4r=9 | | −3(4x+5)+5x+2=−34 | | 7=-5x+7 | | 10x-22=18x+12 | | 10d-5d+2d=7 | | 4z+z-z+3z=14 | | 4-4(5x-18=184 | | 2k+k-3k+k+k=14 | | 15x-26+26=180 | | −3(4x+5)+5x+2=-34 | | 10000=x-0.1x | | 6=b/4=3 | | 15x-26=26 | | 2q+7q=9 | | -y=8-7 | | 0.5(4z-7)=2z-3.5 | | 4x-4(5x-18=184 | | 15n-12n=12 | | 6=3g+9 | | 19p-10p=9 |